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A STUDY OF SOLAR-SYSTEM GEOMETRIC PARAMETERS
FOR USE AS INTERPLANETARY NAVIGATION AIDS
By W. Thomas Blackshear and Katherine G. Johnson
Langley Research Center

SUMMARY

28738

Recognizable geometrical changes in the position of celestial bodies which
may be observed by a pilot on a typical mission to Mars have been examined.
Equations are presented for determining apparent positions of the Sun and
planets on the celestial sphere, angular diameter of the bodies, angle between
various pairs of the bodies, phases, and possible eclipses and/or occultations.
Typical charts are presented which would be useful in planning interplanetary

navigational procedures. z “ )

INTRODUCTION

Various types of onboard navigational systems have been investigated (for
example, see refs. 1, 2, and 3) which require sightings and measurements of
celestial bodies. The present report is designed to provide information which
would not only aid the navigator during an interplanetary mission but would aid
in the premission planning of the navigational procedures. Equations are devel-
oped herein for determining the following parameters along an interplanetary
trajectory: apparent positions of the Sun and planets on the celestial sphere,
angular diameter of the Sun and planets, angle included at the spacecraft
between various pairs of celestial bodies, and phases and/or possible eclipses
of the bodies. The trace of the spacecraft heading (longitude and declination
of the velocity vector) is also determined.

In the present report, the aforementioned phenomena are investigated for a
typical mission to Mars. Positions of the planets were obtained from refer-
ence 4. The Navigational Star Chart (ref. 5) was used for the projections of
planet and vehicle positions on the celestial sphere. The planets were chosen
as reference bodies because their diameters are measurable and, whereas the
stars remain relatively stationary, the planets orbit among the stars in a
narrow band on either side of the ecliptic.



SYMBOLS

A angular diameter

a constant used in derivation of equation (9)

M; ,M
01’025} variables used in derivation of equations (9) and (11)
2

D distance from spacecraft to center of celestial body

d projection of lighted visible portion of planet onto planet diameter
normal to spacecraft line of sight

P angle between normal to planet-Sun line and normal to planet-
spacecraft line

—

R position vector

r radius of planet

T time from exit of sphere of influence of Earth, days

XY,z rectangular right-hand axis system where X-axis is in the direction
of the vernal equinox and Z-axis is in the direction of the North
Celestial Pole

X,¥,2 position coordinates In rectangular right-hand axis system

r!’ Aries

o angle included at planet between Sun and spacecraft

@ 5B, 7 angles used in derivation of equation (9)

o) declination, measured positive or negative from earth equatorial plane

1 angle included at spacecraft between pairs of bodies

A longitude measured westward from positive X-axis

Subscript:

h hours




PROCEDURE

An n-body ballistic trajectory to Mars was calculated on an electronic data
processing system using the method described in reference 6, in which the space-
craft was assumed to be lsunched on January 4, 1967. It left the sphere of
influence of Earth after 66 hours, and reached the sphere of influence of Mars
after about 185 days. In the present paper, two phases of the trajectory are
considered: the geocentric phase, the portion of the trajectory within the
sphere of influence of Earth; and the heliocentric phase, the portion from the
sphere of influence of Earth (845,000 km from Earth) to the sphere of influence
of Mars (400,000 km from Mars). The portion of the trajectory within the sphere
of influence of Mars is not included, inasmuch as the geometric phenomena there
are analogous to those within the sphere of influence of Earth.

Planet positions and vehicle headings.- Planetary coordinates in a helio-
centric Earth-equatorial system, as provided in reference 4, are given at
varying intervals. The second-order Lagrange interpolation procedure (see
ref. 7) was applied to these coordinate values to obtain planetary positions at
times for which vehicle coordinates were calculated. The positions of the vehi-
cle and planets in this coordinate system are shown schematically in figure 1.

Coordinates of the Sun and planets in an Earth-centered, Earth-equatorial
system were obtained by the linear transformation

- =2 =

Rep = Rsp - Rge (1)
where
ﬁ;p position vector from center of Earth to center of planet
ﬁgp position vector from center of Sun to center of planet
ﬁ;e position vector from center of Sun to center of Earth

Longitude measured westward from the positive X-axis was obtained by using
the following equations:

A = 270° + arc tan ]§| (x>0, y> o)\

A = 90° - arc tan l%l. (x>0, y<0) g »(2)
A = 270° - arc tan '%l (x <0, y>0)

A = 90° + arc tan'|§| (x<0, ¥y< O)J

Declination from the Earth-equatorial plane was obtained by use of the
relation



5 = arc tan —2—— (3)

-

where the positive X-axis is in the direction of vernal equinox, the XY-plane
contains the celestial equator, and the Z-axis is positive in the d1rectlon of
the North Celestial Pole.

The spacecraft heading was determined by computing the longitude and decli-
nation of the spacecraft velocity vector (velocity with respect to the Sun) as
described, using coordinates from the interplanetary trajectory program

(ref. 6).

Angular diameter.- Angular diameters of Mercury, Venus, Jupiter, Saturn,
Uranus, Neptune, and Pluto were obtained, under the assumption that they are
spherical bodies, by the small angle approximation

A=Z ()

where D 1is the distance from the spacecraft to the center of the celestial
beody as illustrated in the following sketch:

Spacecraft
Body

Because of the relatively large size of the Sun and the close approaches
of the spacecraft to the Earth and Mars, the angular diameters of these three
bodies were obtained from the equation

= 2 arc sin % (5)

Equation (5) is exact under the spherical-body assumption; however, it
requires more computing time than equation (4). For this reason equation (4)
was used whenever its application would yield sufficiently accurate results.

Included angles.- The included angles, as seen from the spacecraft, for
various combinations of the solar bodies were calculated from the vector
equation:

- -
Ryp1 - Rypo

n = arc cos (6)

lﬁvbll ‘§Vb2|
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where

A‘
Ryp1 position vector from spacecraft to solar-system body 1
-t
Rypo position vector from spacecraft to solar-system body 2

as indicated in this sketch

Body 1
-
Ryb1
Ul
. -
Spacecraft va2.

Body 2

The position vectors from the vehicle to the bodies ‘ﬁvbi were obtained
from the transformation

I*;vf::L = Rept - Rev (7)
where
ﬁébi position vector from center of Earth to center of body i
ﬁév position vector from center of Earth to spacecraft

Planetary phases and eclipses.- In this study, the phase of the planet is
defined as the ratio of the visible Sun-lighted portion of the planet to the
total portion visible from the spacecraft. Under the assumption of spherical
bodies, the calculation of phase may be reduced to a two-dimensional problem in




which the plane of reference is determined by the positions of the spacecraft
and the centers of the Sun and the planet.

In instances where the angular dismeter of the planet is very small (less
than 1°) the phase is adequately approximated by the ratio d/2r where 4 is
the projection of the lighted visible portion of the planet onto the planet
diameter normal to the spacecraft line of sight as shown in the following
sketch:

Spacecraft

From this sketch it 1s seen that

r-rcos P_1-cosP (8)
2r 2

Phase =

where
P =180° - «

Whenever the angular diameter of Mars and Earth exceeded 1° a more exact proce-
dure was used for calculating the phases of these two planets. Consider the
following sketch, in which

a = 180° - o

P = o + B




- (D2 _ re)l/E

©
i

<] arc tan %

y = 90° - @

¢ =T sin vy

¢=a1-9o°=9o°-a

Spacecraft

In order to solve for B let
M, = S(¥ + B) = 2(180° - @) = L(270° -
173 5 3( %)
By applying the law of tangents and letting

1 r-¢<
My = E(W - B) = arc tan Yo, tan My




then
B =M -M

Since P = 180° - o + 8 = 180° = a + M} - Mo

P=180° - a + & 270° - - arc tan e tan L(270° -
2( al) r+ ¢y 2( al)

180° - a + %(2700 - 180° + a) - arc tgn[;—z-flk tan -12-(270O - 180° + aﬂ (9)

+

or
) 1/ an0 r-c 1/an0
P =180° - a + =(90° + «) - arc tan tan =(90° + a) (10)
2 . r+ cy 2
Substituting
r, = (rz i c12)1/2
and
1/2

cp = (c12 + 12 - 2cqr cos ¢)
obtained by applying the law of cosines, in equation (lO) yields

r, + ¢, cos(180° - P) r, -c,cos P
Phase = —& 2 s ( =L 2 : (11)
ry 2rl

Planetary eclipses were determined by examination of the data giving
phases, positions, and angular diameters of the solar-system bodies. ‘

RESULTS AND DISCUSSION

By applying equations (1) to (11) to the Martian trajectory data the
results presented in figures 2 to 8 were obtained.

The positions of the Earth and the spacecraft projected upon the star back-
ground of the Navigational Star Chart are shown in figure 2. The heavy dashed
curve shows the position of the spacecraft as seen from the Earth (center); the
s0lid curve gives the position of Earth as seen from the vehlcle. Since the
Earth-vehicle vector is the negative of the vehicle-Earth vector, the two curves
are mirrored about the celestial equator with a shift of 180° in sidereal hour
angle. The numbers with a subscript h on the curves denote flight time in
hours from injection and the numbers without subscripts indicate flight time in
days after exit from the sphere of influence of the Earth. Data of the type

8




shown on figure 2 could be used to provide radar-pointing predictions to Earth-
based tracking stations.

The relatively rapid change in apparent position during the first few hours
of flight occurs because the spacecraft is still traversing its escape parabola
in the vicinity of its vertex and hence is partially circling the Earth. As the
vehicle recedes farther from the Earth its direction of motion becomes more
nearly straight away, with a resulting decrease in the rate of change of appar-
ent position. Similar curves would result if the analogous Mars-vehicle situ-
ation were considered, except that the direction of change of apparent position
would be reversed.

Apparent positions of the celestial bodies and the spacecraft as seen from
Earth at the time of spacecraft exit from the sphere of influence of Earth are
shown in figure 3(a). Figure 3(b) gives the positions of the Sun and planets
on the celestial sphere as seen from the spacecraft at this same time. These
two figures indicate that there is no appreciable change in the apparent posi-
tions of the celestial bodies at this time whether viewed from the Earth or the
vehicle. This is due to the shift in reference position (approximately
845,000 km) being insignificant in comparison with the great distances sep-
arating the bodies of the solar system. ‘

Figures 3(c) and 3(d) show the positions of the celestial bodies, at the
time of vehicle entry into the sphere of influence of Mars (T = 185 days), as
seen from the Earth and the vehicle, respectively. Comparison of these two
figures shows appreciable changes in apparent positions of the Sun and the inner
planets, since the shift in reference position is of a magnitude comparsble to
the separation distances between these bodies. The outer planets show little
displacement in apparent position since the reference shift is still minor with
respect to the distance between these bodies and the Earth-vehicle system.

In figure 4, the projection of the spacecraft heading on the star back-
ground is shown. Such a projection would help the pilot in alining the space-
craft attitude with the flight path.

Figures 5(a) to 5(c) show the traces of the positions of the solar-system
bodies on the celestial sphere as seen from the vehicle during the 185-day
heliocentric phase of the mission. It is noted that the only significant
changes in apparent position are experienced by the Sun and the inner planets.
All bodies, with the exception of Earth (at the beginning of the mission) and
-Mars (during the final phase of the mission), lie approximately on the ecliptic.
Rapid change in the apparent position of Mars is noted during the final portion
of the heliocentric phase as shown in figure 5(a). Energy considerations
restrict the vehicle trajectory to a region close to the ecliptic plane and
thus permit large deviations from the ecliptic in planetary apparent position
only when the spacecraft is in the immediate vicinity of the observed planet.
(Pluto is excluded from this consideration but it is doubtful that this small,
distant body has any navigational value for the type of mission investigated.)
Preflight analysis of the type of data shown in figure 5 would determine what
combinations of celestial bodies would be most suitable for navigation purposes
on a particular mission. Thus large-scale navigational maps to be used during



the flight need be made only of the specific areas of interest for that par-
ticular mission. .

For the specific Earth-Mars trajectory considered it is seen that no star
of navigational importance is occulted by any of the solar-system bodies during
the heliocentric phase. Although such occultations are possible the combina-
tion of extremely small planetary angular diameters and the restriction of
planetary apparent position to a narrow band bordering the ecliptic make their
occurrence improbable.

The angular diameter of Earth during the geocentric portion of the flight
is shown in figure 6(a). Figures 6(b) and 6(c) illustrate the variations in
angular diameter of the solar-system bodies during the heliocentric phase. The
angular diameters of the solar-system bodies, excluding Earth, are essentially
constant during the geocentric phase of flight and can be taken as the initial
values given in figures 6(b) and 6(c) for the heliocentric phase.

Figure 7 consists of plots of the included angle between various pairs of
the solar-system bodies as measured from the vehicle. It is obvious that the
included angle will show the greatest variation for pairs of bodies having the
greatest change in apparent position. Thus it can be inferred (from fig. 5)
that variations in included angle will be greatest when at least one of the
bodies under consideration is either the Sun or an inner planet and that the
included angle between pairs of outer planets should remain approximately con-
stant. This inference is borne out by figures 7(b) to 7(g). The information
given in figure 7 could be used during flight to preset a sextant with suffi-
cient accuracy to locate the two bodies under conslderation within the field of
view. Plots of the type shown in figure 7 also give information that may be of
navigational significance, such as the occurrence of included angles of 0°
and 180°.

An illustration of the value of these particular angles is found in the
problem of obtaining a position fix in space. An observed angle greater than
90° between two planets fixes the spacecraft's position on an ellipsoidal shaped
surface. This surface is illustrated in the following sketch:

For the special cases in which the measured angle is either 0° or 180° the sur-
face of position converges to a line of position. (Consider, for example, the
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angle included between Venus and Uranus (fig. 7(e)) at T = 41 days.) In either
of these cases a second angle measurement between either planet and a third is
sufficient to determine the location of the spacecraft on the line of position.
Thus a position fix may be obtained with two angle measurements whereas, in
general, more measurements would be required. (See ref. 3.)

Figure 8 illustrates planetary phases as functions of flight time. Only
the variations in Earth phase during the geocentric portion of the mission are
shown in figure 8(a) since the phases of the other planets are essentially con-
stant during this relatively short time period. Figure 8(b) illustrates that
the rate of planetary phase change is primarily dependent upon the nearness of
the planet to the Sun since, in general, the smaller the radius of the planet's
orbit, the greater the time rate of change of the Sun-planet-vehicle configu-
ration. Exceptions to this generality occur when the vehicle is close to one
of the planets as illustrated by the rapid change in Earth phase during geo-
centric flight.

Although planetary phases as predicted by geometry may be extremely diffi-
cult to observe, because of large distances and distortion by cloud cover, and
hence have little navigational importance in their own right, they do affect
angle measurements. For example, consider a sighting of the planet Venus from
near Earth when Venus is at its brightest. Since apparent brightness is a func-
tion of both distance and phase, Venus is brightest in the crescent phase, not
when full. (See ref. 8.) Unless considerable magnification is used Venus will
appear as a point source of light even in the crescent phase. Thus a sighting
centered on this point source will yield angle measurements for the position of
Venus which are several arc-seconds in error from the true position. Knowledge
of planetary phases as a function of flight time will permit corrections to be
made for this source of error. It may be noted that the phases of all planets
exterior to Mars remain essentially full during the entire flight. This will
hold true for any mission in which the vehicle trajectory remains within or near
the Mars orbit since for this geometry it is impossible for planets exterior to
Mars to exhibit phases other than gibbous phase.

Cross-reference between figures 5, 6, and 8 provides adequate information
to describe completely the occultation of one solar-system body by another. As
an illustration of this procedure consider occultations of Mercury by the Sun.
Although the angular diameters of all bodies of the solar system are less than
1° throughout the heliocentric phase, it is seen in figure T(c) that either
occultations or transits of Mercury may occur after 12, 57, 121, and 165 days
of heliocentric flight. Referring to figure 8(b) shows that the phase of
Mercury is full at 12 and 121 days and new at 57 and 165 days. Since the phase
of & planet orbiting interior to the vehicle trajectory is full when alined with
the vehicle and the Sun if the Sun is between the planet and the vehicle, occul-
tations of Mercury by the Sun occur at 12 and 121 days. At 57 and 165 days
Mercury is in transit across the Sun. Comparison of angular diameters as shown
in figure 6 determines the degree to which one body is occulted by the other.
Figures 6 and 7 (or enlargements of these) could be used to determine the length
of time that one body is partially or totally occulted by the other.

11



CONCLUDING REMARKS

A preliminary study of some of the geometric phenomena of space flight as
seen from a spacecraft has been conducted. The specific quantities studied for
a typical Earth-Mars trajectory were: positions of the Sun and planets on the
celestial sphere, the trace of the vehicle heading on the celestial sphere,
angular diameters of the bodies of the solar system, included angles between
pairs of these bodies, and planetary phases and eclipses. The report also pre-
sents the method and pertinent equations for determining these geometric phenom-
ena. Results shown for the mission to Mars discussed herein would, in general,
apply to other interplanetary missions and could be extended to include certain
navigational stars. An investigation of this type would yield information use-
ful in the preflight planning of onboard navigational procedures such as selec-
tion of the most suitable combinations of celestial bodies for particular meas-
urements and the preparation of large-scale flight maps of the specific regions
of the celestial sphere of interest for a given mission. This information
could also be used during flight to preset angle-measuring devices to precal-
culated values and thus reduce the navigator's work to fine adjustments when
making the actual measurement. '

The results obtained in this study, as well as some implied results and
applications, are summarized as follows:

1. During the departure and approach phases of an interplanetary mission,
while the spacecraft is within the sphere of influence of the launch or target
planet, the quantities showlng most significent rates of change are those with
respect to this primary planet.

2. During the heliocentric phase of the mission, variations in the geo-
metric quantities considered were much greater for the inner planets; the vari-
ations were largest for Mercury and became extremely small for planets beyond
Jupiter.

3. The extremely small values of angular diameter and their slow rates of
change during the heliocentric phase indicate that such measurements would be of
little navigational importance for this phase except for presetting certain
navigational instruments. However, the reverse is true for planetary approach
or departure during which the angular diameter is large and changes rapidly;
this phencmenon presents a means of determining distance and velocity relative
to the primary planet.

L, Occultation of celestial bodies of navigational importance by bodies of
the solar system during the heliocentric phase is, in general, a very rare
occurrence.

5. The phases of all planets exterlor to Mars remain essentially full and
constant throughout the flight.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., March 26, 1965.
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Figure T7.- Angle included at spacecraft between various palrs of solar bodies.

27



*panutiuc) -°) a.mSTJg

*HUSTTI OTIFU00TTY Furanp s3ouweTd I9Y30 PUB YIey Ud9M3ag (q)

sfep ‘QUBTTF OTIFUSICTITIY UT SWI],

002 0gT 091 oKt 02T 00T 08 09

—_ | [—

ungeg T o < ~

7

e

\\\\Mmzonmz

——
—
e

— —— sJIe ~— T e~ —
— S—

\\4\V.fﬂ omTd \\\\\\\l\lVA\/\‘ —
\ /l /‘Vﬂ".
\ /l/ .\l!\ll\\l\l\.\\\l\.\\.\vl -

snueapn ]

0cT

06T

0gT

Jop ‘oTBur papnyoul

28




Included angle, deg

Included angle, deg

180

150

120

30

="~y Uran —
B e T T
P - ~—. /
/ \‘* /
— - Pluto - \}(
/ \:\\\
//, \;\\\\
i \\
- TS~
2-3, /Neptune \\\‘\

80— _
N S
\\\ //’7 \\\
150— \ Mars _— \
~. - \
\\/1’/1/ \
ol =< \
- \\_Jupiter \
" \~\ 1
//
90 ~
\~\
60 ‘\\\\‘

t,__, - - g --\___1\_/Ifrcury B ,-----\\\ -
St I L R | | N R

20 Lo 60 80 100 120 140 160 180
Time in heliocentric flight, days

(¢) Between Sun and planets.
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